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FILTERING INTERPOLATORS

I. INTRODUCTION

In many electro-optical imaging systems, the most serious impediment to detecting low-contrast
moving targets is spatially varying background clutter. Multiframe clutter-suppression processing can
often provide an effective solution to this problem. In its simplest form, this processing involves
subtracting a second image from a first in a frame-differencing signal processor (FDSP), in order to
suppress the fixed background on a pixel-by-pixel basis. (The emphasis here will be on a first-order
FDSP, but the interpolators described will also be applicable to higher-order FDSPs, or to any other
signal processor that compares multiple frames of data.) Since one frame must almost always be
resampled before it is compared to the other, interpolation error contributes to clutter leakage in the
difference frame. The key idea of this report is to apply a spectral filter to the unshifted data that matches
the filtering effect of applying the interpolator to the data that are shifted, thereby minimizing the effect
of interpolation error in the difference frame. Theoretical analysis indicates that the result, which we will
call a filtering interpolator, gives large clutter leakage reductions with minimal loss of target signature.
Tests on simulated imagery confirm target-to-clutter ratio improvements of a factor of five or more for
those highly structured scenes examined, in the absence of other sources of error. (The simulation
assumes a space-based IR surveillance sensor, but that is not important to the results presented here.)

To set up the mathematical problem, let x, denote the value at ¥ = n of data taken from a continuous
function f{u), (i.e., x, = fln)). Consider two sets of equally spaced samples {x,} and {x,. }, as shown in
Fig. 1, the second set being taken at points shifted to the right a distance s from the first. Since
integral-sample shifts are effected simply by reindexing the data set and do not require interpolation, we
will assume 0 < 5 < 1. The first data set {x,} will be called the shift data, because it must be processed
to find an interpolated value; the second set {x,,,} will be called the no-shift data. Interpolations are
always done between the two central points: a new value y, must be generated from the {x,} to compare
to x,. (The set {x,} is then moved over one sample for the next interpolation.) The new value y, is to be
given by a local formula (as opposed to a global spline method [1,2]):

= T sT TET o AT T e TR = s T SEN SSSEEESME T AFASY

Yo = ﬁ x.A,(5), 1)

A=-(N2-1)

where the 4,(s), the interpolation coefficients, are functions of the shift.

We define what will be called standard interpolators as those for which A,(0) = 8(n); that is,
Af0) =1, A(0) = O for n > 0. When the shift is zero, these interpolators simply reproduce the data
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there will be some error when ¥, is compared to x,. Interpolators tend to reproduce some frequency
components (usually low) of data with high fidelity, but do less well on other frequency components
(usually high). Thus, the shifted data have been through a spectral filter, while the unshifted data have
not. The resulting spectral mismatch can lead to significant clutter leakage in the difference frame. While
contemplating this problem, one of us [Stocker] realized that if the right spectral filter could be applied
to the no-shift data, then the difference between y, and x, would be reduced, perhaps dramatically. Of
course, such a filter would also reduce high-frequency detail.

Manuscript approved Aprit 20, 1992
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+  SHIFT DATA, $xp}
o NO—SHIFT DATA, {xp1q8
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Fig. 1 -- The interpolation problem: the solid curve represents the analog signal and
the shift and no-shift data sets are separated by the shift 5. An interpolated vaiue must
be found from the shift data set to compare to the no-shift data value x .

In this report, we develop parameterized families of filtering interpolators that permit the user to
choose the best trade-off between clutter suppression and high-frequency retention for a particular
application. One-dimensionat data will be considered explicitly; for two dimensions, the interpolators are
applied to each dimension separately.

For our purposes, the shift s is assumed to be known. Usually, s must be determined from the data
itseif, a problem addressed by Kuglin and Hines {3] and Schaum and McHugh {4]. The shift can also be
found by searching for the value of s that minimizes the difference frame [5]. Our ultimate aim is to
minimize clutter in an FDSP, so s must be accurately known. A small error 8s in the determination of

shift will lead to an error in the difference frame of approximately f ‘(u)os.

2. A PRESCRIPTION FOR INTERPOLATORS

One way 0 generaie the 4, is to select a set of basis functions f,{x) that are thought to fit the data
fairly well and require that these functions be interpolated exactly. That is, the 4, are selected to satisty
the equations

P

Ni2

Y LA = £, )

nm-(NZ-1)

withm =1, ..., N. Note that for s = 0, Eq. (2) is satisfied by 4,(0) = &(n). Solution of these equations

L - RS, gy

feads to standard 1n[erp0|ators for any desired basis funciions.

For the polynomial basis functions f,(x) = x™ !, the resuiting A’s give standard Lagrange
interpolation [1], that is, the data are fit with a polynomial of order N — 1, from which y, is calculated.

oefficients for these L agrange functions for N data nnm‘rc ﬂ F- N\r 1nt9mnlafnrﬂ are, for even N,
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Another possible basis for interpolation is the set of trigonometric functions used by the discrete
- Fourier transform (DFT). For N = 4, these are

F ()
Ji)

£)
£,(x) = sin(xx/2),
J.x) = cos(wx).

1
Ly

cos{mx/2),

@)

Substitution of these functions in Eq. (2) yields the DFT4 interpolator that was shown by Lucke [6] to
give better performance than LF-4 when the data sampling rate is low.

Interpolators derived from Eq. (2) are of the standard type: when applied with s = 0, they simply
reproduce the data. We now rewrite Eq. (2) to include the condition that the interpolator be applied to
the no-shift data, but only to filter it, not to shift it:

N2 Ni2
Y fmA® = ):; £(n + $HA0). ®)
n=-(N/2-1) ne-(N/2-1)

The left-hand side of Eq. (5) is, as before, the result of applying the interpolator to the shift data.
The right-hand side is the result of applying it to the no-shift data. The requirement that the two be equal
preserves the exact interpolation of the basis functions in the sense that, when the difference of the two
processed data sets is taken, the result is zero. (Filtering interpolators, when applied with s = 0, do not
reproduce the data to which they are applied; that is, from Eq. (1), y, # x,.) Equation (5) allows the
A,(s) to be found for a given set of basis functions once the A (0) are chosen. In what follows, we will
give forms for arbitrary even N where possible but will usually restrict our attention to N = 4. Results
for N = 6 wiil be given in Section 7.

We will require that the interpolator reproduce a constant signal exactly (i.e., fi(x) = 1 so that
and that the no-shift filter be Symmetrlc about # = 0 so that its phase is a linear

1 R =
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™

a

z
I

A,0) = a,
A0) = 1 - 2a,
©)
A0 = a
A,0) = 0.

Only three samples of the no-shift data set have nonzero coefficients; when @ = 0, only one sample has
a nonzero coefficient and Eq. (5) reduces to Eq. (2).

When the A4,(0) from Eq. (6) are substituted into Eq. (5), along with the LF4 or DFT-4 basis
functions, the resulting equations can be solved for the A4,(s). The interpolation coefficients for LF-4 are
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A = é [6a - 2(1 + 3a) 5 + 352 - 7,
A4 = % 201 - 2a) - (1 - 6a) 5 - 25% + 57,
Q)
AS) = % 2a + 21 - 3a) 5 + 5? - §7,
AS) —é[»(l - 6a) 5 + 5.
For DFT4 we, find
A_(5) = % [1 - 2(1 - 2a)sin{xs/2) - (1 - 4a)cos(xs)],
Afs) = Ti [1 + 2(1 - 2a)cos(xsi2) + (1 - 4a)cos(xs)l,
&
AfS) = % [1 +2(1 - 2a)sin(xs/2) - (1 - 4a)costms)],
Afs) = % [1 - 2(1 - 2a)cos(ws/2) + (1 - 4a)cos{xs)}.
At this point, we iniroduce the interpolation function A{x} defined by the equation
hn - 5) = A(S), )}

and A(x) = 0 for |x| > N/2. The interpolation function h{x) is well-defined because 0 < 5 < 1. Note
that {1} = A(—1) = a and #(0) = 1 — 2a. For DFT-4, the interpolation function is

) = % [1 +2(1 - 2a)cos(xxf2) + (I - 4a)cos(x)]. (10)

With ¢ = 0, this is the standard DFT-4 interpolation function given by Lucke [6]. Figure 2 plots the
LF4 and DFT4 interpolation functions for ¢ = § (standard interpolation) and for ¢ = §.2! and
a = 0.2, respectively, (the best values for filtering interpolation, as we see in the next section),

3. OPTIMIZATION

The value of the parameter ‘g’ remains to be determined. The motivation for filtering the no-shift
data is to perform the same spectral filtering that the interpolation process performs on the shift data,
thereby reducing the difference between the two data sets. In principle, this means matching both the
amplitude and phase of the digital filters applied to the two data sets, Here we will concentrate on
matching amplitudes, because this leads to a very effective solution to the FDSP clutter suppression
problem. We will see later how a considerable degree of phase control is built into Eq. (5) and show in
the Appendix how the problem of matching phases of the filters for the two data sets can be approached
directly. Detailed examinations of amplitude and phase matching in interpolators and in differencing filters
are developed by Schaum [7].
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Fig. 2 — Interpolation functions for LF4 and DFT-4, in
standard form (a = 0) and best-filtering form (a = 0.21
and a = 0.2)

We see from Eq. (5) that the filtering coefficients applied to the no-shift data are the interpolation

coaffiriante for = n whila thoca annliad tn the chift data can ha for anv value of ¢ ‘Tharafara in ardar
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to make both sets of coefﬁcnents perform (nearly) the same spectral filtering, we seek the value of ‘‘a”
in the interpolation function that will make the amplitude of spectral filtering as independent of shlft as
possible. The value of ‘@’ that fulfills this condition will be called the best-filtering “‘a.””

Letting H(f,s), where f is the frequency in cycles/sample, signify the shift-dependent spectral filter
for which the tap weights are the 4,, we use standard methods [8] to find the magnitude of H(f,s):

Ni2 NiZ=m

[HUADIP = Y A0 +2 E Y A4, (5)cos2rmp). (11)

n=-(Ni2-1) mal  p==(N/2-1)

Figures 3(a) and (b) show contour plots of |H(f,s)| for LF-4 and DFT-4, respectively, in their standard
form (@ = 0). Both can be seen to produce substantial filtering of high frequencies for nonzero shifts;
more to the point, the filtering is a strong function of shift.

We now investigate how to choose *‘a” so that |H(f,s)| is as independent of s as possible. This
amounts to making the contours of | H(f, s)[ resemble straight lines parallel to the shift axis. With one
parameter, this is best done for a fixed frequency f = f;; since most imagery data are dominated by low
frequencies, £, should be near zero. To make a contour line flat, we will require that the derivatives of
the function with respect to s vanish to as high an order as possible.
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Fig. 3 — Contour plots of the amplitude of H{f,s) for LF-4 and DFT-4 witha = 0 and g equals best-filtering value, For the
latter, the contours are remarkably close to being straight lines parallel to the shift axis, except for frequencies near f = 1/2.

For LF-4, the desired value is ¢ = 0.208

=~ (.21, and for DFT4, it is @ = 0.201 = 0.2, which
were found by requiring that :

2

% |H(f,$)| =0 for s = 1/2, f, small. (12)
In Eq. (12), “‘f, small’* for DFT-4 means that cos(2amf;) is adequately approximated by 1 — Qxmf)}/2;
then the solution to Eq. (12) is independent of f,. For LF-4, the expans\mu}f the cosine must be carried
to fourth order in £ it turns out that the sum of all the second order terms is zero, regardless of the value
of ““a.”” Vanishing of the second derivative is required in Eq. (12) because symmetry of the functional
dependence on 5 means that the first derivative is necessarily zero at 5 = 1/2. Figures 3(c) and (d) show
that the contour lines of |H(f,s)| are now aimost (but not exactly) straight lines, except for high
frequencies. That is, |H(f,5)| is almost completely independent of shift for the low frequencies that
dominate most real-world image data. This is more true for DFT-4 than for LF~4; it should therefore be
a better interpolator for data that contain more high frequencies, or equivalently, for data that are more
sparsely sampied.
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If the contour lines are very close to straight for most frequencies, we can reasonably expect the same
parameter value to work for a wide variety of applications, because the functioning of the interpolator
will be nearly independent of the frequency content of the data and of the shift. However, for data that
are dominated by high frequencies, it may be desirabie io make the high~frequency coniours straighier
than shown in Figs. 3(c) and (d). This can be done by increasing ‘@’ slightly, to about 0.22 or 0.24,
at the cost of having contours that are not straight (slightly convex upward) at lower frequencies. In
Sections 6 and 7, we will see examples of interpolators that cannot, with any choice of parameters,
achieve the degree of contour line straightness that LF-4 and DFT-4 do. With such nonstraight contours,
parameters may need to be adjusted for different applications, i.e., for variable frequency content of the
data and for different shifts.

That filtering interpolators can be constructed with nearly straight contours is of particular interest
for higher-order frame differencing. A second-order frame differencer might, for example, start with
three frames, subtract the second from the first, the third from the second, and then difference the two
resulting first-differenced frames. If, as is usually the case, the three frames are not coaligned,
interpolations must be performed at each stage of the process. Clutter leakage can be minimized by
initially arranging the frames in order of increasing shift (recall that shift is always between zero and one;
this may require reindexing the samples of one or more frames), applying a filtering interpolator with
zero shift to the right-most (cf, Fig. 1), and applying the same interpolator with appropriate shifts to the
other two. With all three frames thus resampled on a common grid and nearly identical spectral filtering
applied to each, the second-order difference can be generated without further concerns about registration
and with minimal effects from interpolation error. Obviously, the same principle applies to any number
of frames or order of differencing, as well as to any other signal processor that compares multiple frames
of data.

The assumption that the right-most data are the no-shift data ié, of course, purely a matter of
convenience. The left-most data could equally well be chosen: the sole effect of this choice would be to
reverse the order of the tap weights applied to the shift data Thus if several sets of data are involved

n ha talban tn ha tha 1inchifiad datn  serith tha £l o Aa ad ha A Aie
nu._,' {ne can o taken 1o oe ne unsninea Gatd, Wind Ui Tt lug uu.cl.puuu\ua aer lvcu nere apyuw uuwu_y

to those shifted to the left and applied with reversed tap weights to those shifted to the right.

The previous discussion has concentrated on the amplitude of H{f,s) rather than its phase. The effect
of the phase of a digital filter is to shift the Fourier components of the signal: if the phase of H(f,,s) is
0.2 rad, a sinusoid of frequency f; is shifted by 0.2/2x cycles. Thus, the phase of the filter and the shift
of the signal are equivalent concepts, and the reason that we need not consider the phase of H(fs)
explicitly is that its phase requirements are built into Eq. (5) in the form of the requirement that basis
functions be exactly shifted. This point will not be pursued further here, except to exhibit Figs. 4(a)
through (d), which show contour plots of the phase errors for LF-4 and DFT-4. The phase error is the
difference between the actual phase of the filter and the phase of a perfect shifter (e.g., the Nyquist
reconstruction formula). The phase of a perfect shifter is a linear function of frequency with slope
27s: ¢ = 2nsf. Then each frequency component of the signal is shifted by a distance (¢/27 cycles) x
(1/f per cycle) = s, i.e., shift is independent of frequency. In Fig. 4, the phase error is always zero at
a shift of 0.5, because of the symmetry of the tapweights [9], which is A_,(0.5) = A,0.5), 4,0.5) =
A,(0.5). In Figs. 4(b) and (d), the phase error is zero at a frequency of 0.25 because DFT-4 interpolates
this frequency exactly.

4. TESTING THE INTERPOLATORS
As a first step to seeing how well the interpolators work in practice, they were applied to a

representative point spread function (PSF). A PSF is used as a test waveform because it is the most
rapidly varying signal that will occur in most data, and, therefore, the hardest to interpolate. (For an

-
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Fig. 4 — Contour plots of the difference, in degrees, between the phase of H{f,s) and the phase
of a perfect shifter, for LF-4 and DFT-4

example of data that vary more rapidly, consider a scene containing a positive-contrast point source

located very close to a negative-contrast point source; fortunately, such occurrences are rare.} The

representative PSF chosen is a unit-height Gaussian, with standard deviation ¢ given in units of the
sample spacing. By changing o, we can see how well an interpolater works as a function of sampling

rate.

Figures 5(a) and (b) show results in which ‘“worst-phased’” sampling (samples miss the peak of the
curve by the maximum amount) is assumed because it is bound to occur at many points in reat data. A
standard deviation of ¢ = 0.8 is shown because it is a stressing case: it is about the lowest sampling rate
for which the interpolators perform well for any value of “‘a.”” Also with slightly less than two samples
per full width, half maximum (FWHM) of the PSF, it is about as iow a sampiing rate as a reasonabie
system should have (¢ = 1 or higher gives substantially smaller interpolation errors). For ¢ = 0, the
long-dashed curve of Fig. 5 (the result of applying the interpolator to the no-shift data) is coincident with
the solid curve, and the difference between it and the short-dashed curve (the result of applying the
interpolator to the shift data) is substantial. For best-fiitering “‘q,”” the maximum difference between the
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Fig. 5 — Interpolated curves for LF-4 (2) and DFT-4 (b). The solid curves represent Gaussian PSFs, which have been sampled
at the +'s. The shont-dashed curves show the values interpolated from these samples. The long-dashied curves show the effect
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long-dashed and short-dashed curves is reduced by about an order of magnitude; 2 = 0.1 is an
intermediate case. For best-phased sampling (a sample occurs at the peak of the curve), fits are much
better than those of Fig. 5 for @ = 0 but not noticeably different for best-filtering “‘¢.”” For ¢ = 1 and
best-filtering “‘a,”” the two dashed curves are nearly identical, regardless of sample phasing.

Direct testing of interpolators on real data is very desirable, but seldom possible: an interpolated
value can be calculated, but the true value to which it should be compared is usually not available.
However, the relative performance of different interpolators can be compared by resampling and
differencing simulated imagery and calculating the root mean square (rms) clutter Ievels of the difference
frames. With computer-simulated imagery, we have the luxury of studying interpolation error in isolation,
separated from noise, hardware problems such as line-of-sight jitter, or other complications. Tests on
imagery of the Earth’s surface [10] have verified that the best-filtering a’s found above are also the best
values to use on imagery. Tests also show that target-to-clutter ratio improvements of a factor of five
(14 dB) or more are obtainable, compared to @2 = 0 on highly structured scenes, including an areal view
of a city. Improvements on low-structure scenes are similar, but this is probably not important because
the dominant source of leakage through an FDSP for these scenes is noise, not interpolation error.

But Figs. 3 and 5 show that the price of this additional clutter suppression is a loss of high-frequency
detail. For a = 0, only the shift data are filtered and the loss of detail is minimized. For best-filtering
“a,” both data sets are filtered, and the loss of high frequencies can be substantial. Equations (7) and
(8) constitute one-parameter families of interpolators: the user can choose the parameter ““a”’ anywhere
between O (minimum high-frequency loss, maximum clutter leakage) and its best-filtering value (greatest
high-frequency loss, least clutter leakage), depending on the particular target strengths and clutter and
noise levels of interest. If, for example, @ = 0.1 reduces clutter leakage below the level of sensor noise,
then the primary effect of further increasing “‘a>’ will be to reduce target signature.

9
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5. THEORETICAL PERFORMANCE ANALYSIS

There are two reasons why filtering interpolators work better than standard interpolators in preparing
data for an FDSP. As emphasized above, the first is that similar spectral filtering is done on both data
sets (standard interpolators operate on only one data set). The second is that filtering interpolators, more
than standard interpolators, reduce the data’s high frequency content. This includes the out-of-band
contributions from the displaced replicas of the spectrum of the original analog signal that exist in the

H Ry Sy &

spectruin of the sampled data and are aliased into the passband by the resampling process. This latter
point is addressed in the Appendix, which gives a general analysis of FDSP performance for an arbitrary
interpolation function, or kernel, and shows how the kernel acts as a filter. Figure 6 shows the frequency
responses of the standard and best-filtering interpolation kernels for LF4 and DFT-4 (the plots were

obtained by Fourier transforming the relevant four-point kernels, which are shown in Fig. 2).

Figure 6 shows that the reductions in the peak sidelobe level obtained with the best-fiitering kernels
are large: 15 dB for LF4 and 30 dB for DFT-4, Differences in stopband behavior between the two types
of kernels are also instructive. The LF-4 kernels have comparatively high sidelobes with wide nulls
around integer multiples of the sampling frequency (i.e., covering the repetitions of low frequencies). The
DFT-4 kernels have much narrower nulis but also have a2 much lower average level for the stopband
sidelobes. On this basis, one would expect LF-4 to perform well on low-frequency data, while DFT-4
would be a better choice for data with greater high-frequency content.
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Fig. 6 — The frequency responses of LF-4 and DFT-4 for
a = 0 and & equals best-fltering value. The plotted
quantily is twenty times the logarithm of the magnitude of
the Fouricr transform of the interpolation function.
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Of course, the cost of the stopband improvement obtained with filtering interpolators is additional
in-band attenuation of the target signal, but the tradeoff is very beneficial in terms of signal-to-clutter
ratio (SCR). The Appendix shows how the clutter power leakage and point target response of an FDSP
can be expressed as integrals over frequency of the scene and point response power spectra, combined
with the frequency response of the interpolation process (Eqs. (A-8) and (A-10)). These results were used
to calculate interpolator performances for the specific case of a Gaussian PSF (¢ = 0.8) and the
representative background power spectrum given in Eq. (A-9). With the target and background both
scaled to unit integrated power, the difference frame SCR given in Eq. (A-11) is a good measure of the
signal processing gain of an FDSP for different interpolators, compared to an SCR of unity for the
original imagery. Figure 7 shows the shift-dependent SCR gains for LF-4 and DFT-4.

g | \ /
© DFT—4, & = 0.2
(ea) ,
NS
Z W)
= LF—4,a =021
o S
(@]
73}
] DFT—4,a =0
%j v
] LF—4 a =0
St+——7T—7T—— 71 7 T T T T T
0 0.1 0.2 0.3 04 05 0.6 07 08 0.9 1
SHIFT

Fig. 7 — Relative interpolation perfermance found from Eq. (A11) of LF4 and DFT-4
with @ = 0 and a equals best-filtering value. Note that worst performance is not
necessarily obtained at a shiit of 0.5,

The gain shown in Fig. 7 depends on two factors: the clutter reduction in the difference frame and
the target attenuation due to no-shift frame filtering. The target attenuation penalties incurred with the
best-filtering kernels are overwhelmed by the dramatic improvements in clutter subtraction, For the case
considered, SCR improvements of, typically, about 20 dB (a factor of 10 in amplitude) are obtained by
using optimum filtering interpolators in lieu of standard interpolators. Note that, except for shifts near
zero or one, the best-filtering DFT-4 kernel yields up to 6 dB more gain than the best-filtering LF-4

kernel (for the model spectrum assumed). Figure 7 also shows the somewhat counterintuitive fact that a
shift of 1/2 is not always the worst case for interpolation error.

The reduction in target signature found by evaluating the integral in Eq. (A-10) with and without the
filtering term in the integrand is about 1 dB for best-filtering *“a,’’ for the case considered here (Gaussian
PSF, ¢ = 0.8). This result is for integrated signal power. For many systems, the reduction in peak target
signal is more important; it can be seen in Fig. 5 to be about 2 dB, or a factor of about 0.8 in amplitude.
The maximum possible reduction of peak target signal, which occurs for a target that has only one sample
on it, can be seen from Eq. (6) to be 1 — 2a; ordinarily, data are sampled often enough that this degree
of target signature reduction will not occur.

11
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The typical improvement of 20 dB given above is better than the 14 dB improvement quoted in
Section 4 for highly structured imagery, partly because of the particular model background power
spectrum used here and partiy because only a one-dimensional (1-D) problem is being considered. For
isotropic two-dimensional (2-D) daia, errors resulting from interpoiation in one direction are st:msucany
independent of errors resulting from interpolation in the other; the two components are added in
quadrature to find total clutter. Thus, if a filtering interpolator reduces one component of clutter by some
factor it should reduce the other component, and, ccmsequently, the total clutter, by the same factor;

e sadaaticn fo dmdanamdamt o8 Alesmemed o tiias P PR S . | aonamd

1 e., »qu.ﬂ. reauclon is HWCPCIUCIL U1l UWIHEISIUIdIIRY . ﬂtit. a1 gt Signatuie Iwuu.lttii i:& ﬁhﬂﬂilﬁll}
multiplicative: if a 1-D interpolation reduces a target signal by 2 dB, then a 2-D interpolation will reduce
it by {(about) 4 dB. Thus, for properly related 1-D and 2-D power spectra [11] (i.e., both are obtained
from the same scene), SCR gain wili be lower for 2-D data than for 1-D data.

The effect of the interpolation process on the statistical properties of the noise can be evaluated by
choosing a data set {x,} that consists of noise with zero mean and variance {x?) = ¢*. It is easy to show
from Eq. (1) that {y,} = 0 and that

N12 N-1 NiZ-m
0= Y A +2 E Y G, A 04,0, (13)
nu-{N/2-1) mel  mw=(N/2-1)

i.e., the variance of the interpolated value depends on the autocorrelation function of the noise. For
uncorrelated noise, only the first sum contributes; Fig. 8 plots the result.
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Fig. 8 — The curves show the effect of the interpolators on the standard deviation of
uncorrelated noise, as a function of the parameter “‘a,’* from Eq. (13). For s = 0 (top
curve}, LF-4 and DFT-4 do the same thing. The greatest amount of noise filtering,
shown in the Jower curves, occurs for 5 = 1/2.
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6. MORE INTERPOLATORS/POSSIBLE SPLINE APPLICATION

Equations (7) and (8) show that the parts of the A, that depend on the parameter “a” can oe
separated out. Denoting this part, which is the difference between standard (¢ = 0) and filtering (@ # 0)
interpolators, by Ad,, we have

A4, =a - as,

AA(S) = 2a + 3as, 14
AA(5) = a - 3as,

AA(s) = as,

for LF-4. These Ad’s can be added to any standard N = 4 interpolator to make a filtering interpolator,
and the same can be said for the AA4’s obtained from Eq. (8). Interpolators generated in this manner no
longer have the property that they interpolate a simple set of N-basis functions exactly (which is also true
of most standard interpolators). Another way to generate new interpolators is to use other sets of basis
functions in Eq. 5.

For example, Eq. (14) can be added to the coefficients of the parameterized cubic interpolator
described by Wolberg [2] to yield

A )= 4a+8a(l +5) -Sa(l +5y +a(l+5)P +a-as,

Afs) =1 - (@ + 3) 5% + (o + 2)5° - 2a + 3as, R
. 13)
AG) =1 - (a@+ 31 -5 + (o + 2)1 - 5) + a - 3as,

Az(s)=;4a+8a(2—s)-5a(2—s)2_+a(2—s)3+as.

We take the parameter o (which alters the frequency response of the interpolator) to be —1/2 (the “‘image
independent optimal choice”’. of Park and Schowengerdt [12]). For this interpolator, it turns out that no
choice of *“‘@"” makes the contour lines of 1ﬂU A) ] ’ shown in rig ¥, as flat as those for LF-4 and DFT 1-4

except for frequencies very near f = 0. By trial and error on simulated imagery, we found that
(coincidentally) @ = 0.2 works best. As can be deduced from Fig. 9, the problem with this interpolator
is that it works well (as well as LLF-4) for shifts near zero and one-half but rather poorly (though still
l-m tHar than ite gtandaed £ ahific ERrYYNT)

OCUCT wiafn NS stanGarg 1Ul-lll} for shifts ncar Ullc'quﬂlcl or uut;c-quaucrb Uutt:f values of o and “‘a’
may work for other data, but the user must proceed at his own risk.

Another candidate for modification is the kernel for cubic B-spline interpolation [2], which is used

here as a lgcal rather than a enhm'-\ mrpmnlntnr (Drnﬂ (13] also uses it this way but does not aypay it to

the frame-differencing problem YInits basm form A 1(0) = A4,(0) = 1/6 and 4,(0) = 2/3, so it is clearly
a filtering interpolator; in fact, it is the first one we used to test the idea. The interpolation coefficients
are
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Fig. 9 — Contour plot for parameterized cubic (PC) interpolation. Mest
contours have the same value near 5 = 1/2 as near 5 = §. Henoe this
interpolator should work well for shifts near 1/2, but not for shifis near 1/4 or
3/4,

O = .é. [l - 3s + 352 - 57,
%®=éﬁ 657 + 357,
(16}
Afs) = % {1+ 35 + 357 - 35,
As) - % 5%,

We could add Eq. (14) to these to change their filtering properties, but inspection of Eqs. (7) shows that
Egs. (16) are equal to LF-4 with a = 1/6; i.e., the cubic B-spline interpolation kernel is a special case
of parameterized LF-4.

The DFT-4 interpolation kernel developed here can also be applied to spline interpolation. A
four-point spline interpolation function A(x) should be (a) everywhere nonnegative and (b) monotonically
decreasing to zero for 0 < x < 2 (cf, Fig. 2 and Ref. [2]). The only value for which LF4 has these
properties is @ = 1/6, but DFT-4 has them for 1/6 < a < 3/10. We suggest, therefore, that DFT-4 with
“a” in this range should be an interesting candidate as a kernel for spline interpolation.

7. HIGHER-ORDER INTERPOLATORS

For some applications, higher-order interpolators may be desirable. Lucke [6] gives a formuta for
standard DFT interpolators of arbitrary order, and, of course, the standard LF-N interpolators are
available in many software packages. Generating filtering interpolators from LF-N or DFT-N for N > 4
increases rapidly in difficulty because of the number of equations that must be solved and the number of
parameters in the no-shift filter. Results for ¥ = 6 will be given.
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For six-point interpolators, imposing the same conditions as for Egs. (6), the 4,(0) are given by two
parameters, a and b:

A_0) = b, A(0) = g,
A0 = q, 4,0) = b, a7
A0) = 1 - 2a - 2b, A,0) = 0.

With two parameters, we can now place two conditions on the contours of {H(f,5}| . We could, for
example, extend the criterion of Eq. (12) to the fourth derivative to obtain maximal straightness of the
contour lines near f = 0 (condition 1). Or we could meet the criterion of Eq. (12) at two different
frequencies (condition 2).

For LF-6, the interpolation coefficients are

1

o5 {12 + 413 - 2(4a.+ BYls + B[ - 3@ + 4b))s” - [7 - 20(@ + 4B))s° - 2s* + 5%,

A @) =

As) = -il- {24b - 2[3 - 4(4a + b)]s - [1 - 12(a + 4b)Is* + [T - 20(a + 4b)]s> + s* - s’}(is)

—

Ay(s) = 535 11 - 5(a - 2b))s - 511 - 4(a + 4b))s” + 5%,

A(S) = A1 - 5), A_(5) = A,(1 - 5), A5) = A,(1 - 3).

With this interpolator, as for the parameterized cubic interpolator of Section 6, the parameters that
fulfill condition 1, namely @ = 0.193, » = 0.101, do not give sufficiently straight contours for larger
Jf. The parameters that fulfill condition 2, with f, smail and f, = 1/4, namely a = 0.255, b = 0.068, do
not work much better and result in a fairly severe loss of high frequency detail. Once again, we find that
no choice of parameters gives really straight contours. Hence, for this interpolator, we shouid expect that
different applications will require different parameter values. Good candidate parameter sets to start with
are those which give the best fits for our Gaussian PSFs, a = 0.24 and » = 0 (shown in Fig. 10(a)) and
those which give the best results on our simulated imagery, @ = 0.26 and b = 0.05.

For DFT-6, the basis functions are

fi) =1, f,x) = cos(2xx/3),
5,&) = cos(wx/3), fx) = sin2wx/3), (19)
£,&) = sin(zx/3), L(x) = cos(mx).

The resulting interpolation function is

hix) = 2 [1 + 2(1 ~ a - 3b)cos(mx/3) + 2(1 - 3a - 3b)cos(2wx/3)

N =

M
\«\y

+ (1 - 4a)cos(mx)]
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for {x! < 3 and zero otherwise, and A, {(s) = Al(n — 5), n = -2, —1, §, 1, 2, 3. The parameter values

found by imposing condition 1 are ¢ = 0.236 = 0.24, b = 0.019 = 0.02. In this case, the contour lines
of |H(f,s)| are quite straight except for frequencies close to f = 1/2, and these parameters work well on
the Gaussian PSFs, as shown in Fig. 10(b), and on simulated imagery. For ¢ = 0.8, this interpotator,
in its best-fiitering form, produces errors about a factor of two smaller than DFT-4, as can be seen by
comparing Fig, 10(b) with Fig. 5(b). At lower sampling rates, DFT-6 maintains a performance advantage
over DFT-4, but the sampling rate cannot decrease much before the data become so poorly sampled that
no interpolator works well, At a slightly higher sampling rate (¢ = 1), the performance difference
between DFT-4 and 6 is much reduced: for well-sampled data, any interpolator gives accurate resuits.

8. CONCLUSIONS

We think that by far the most useful interpolator given here is DFT-4 with @ = 0.2 (besi-filtering
“@’”). We recommend it for general applications, even if the resulting interpolation error is substantiaily
smaller than the noise. LF-4 with g = 0.21 is nearly the same, but produces slightly more high-frequency
loss, and, as can be seen from its interpolation function (Fig. 2), creates (very) small discontinuities in
the first derivative of the interpolated data. Only if minimizing high frequency losses is a major concern
is it likely to be worthwhile adjusting “‘a”” to a smaller value, which adjustment (for best resuits) must
be redone for data sets with different spectral content. Only for extremely low-noise data would a
higher-order interpolator be beneficial.

If the best-filtering value cannot be used, i.e., ““a”" is in the range of, say, { < @ < 0.15, the choice

between LF-4 and DFT-4 is determined by the frequency content of the data: the difference will usuaity
not be large, but LF-4 can be expected to give better results on data that are more strongly dominated
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by low frequencies (or are more densely sampled). Six-point interpolators will improve performance in
this case, but we have scant experience on which to base recommendations. Inspection of Fig. 10
indicates that b = 0, @ < 0.1 should work fairly well; if @ > 0.1 must be used, probably DFT-4 with
a = 0.2 would be a better (or at least a simpler) choice.

For special applications, Section 6 gives instructions on putting the interpolator of the user’s choice
into filtering form. The filtering interpolators introduced here are of the local, convolutional type but also
lead to a candidate kernei for cubic spiine interpoiation (Section 6 again). The new interpoiators are not
appropriate for data with high sampling rates, because well-sampled data can be interpolated with high
accuracy by standard interpolators; in such applications, the primary effect of the new interpolators would
be to reduce target signatures. But for moderate-to-low sampling rates, we have found SCR improvements
of a factor of five or more for point targets against highly structured scenes, when interpolation error is
the dominant source of clutter. In our experience with simulations of a state-of-the-art IR surveillance
sensor, clutter leakage due to interpolation error can always be brought below the level resulting from
other effects, such as line-of-sight jitter, inaccuracies in determining the shift, calibration errors, and
detector noise,
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Appendix

FOURIER ANALYSIS OF INTRERPOLATORS
FOR FRAME DIFFERENCING

In the following analysis, a continuous signal is first reconstructed from the sampled data by
convolving with an interpolation kernel; the result is then resampled at the specified shift. This
interpretation of the resampling problem will show explicitly how the interpolation function, or kernel,
acts as a filter on the data. Since any finite interpolation filter has a frequency response of infinite extent,
it invariably passes out-of-band components in the Fourier transform of the sampled data. These
out-of-band components alias into the base-band when the signal is resampled. Expressions for the
resulting power in a difference frame will be derived for a representative background clutter spectrum
and for a target spectrum. The one-dimensional case is done here; the results are easily extended to two
dimensions.

Let y(x) be a continuous bandlimited signal with Fourier transform ¥(f} defined on the normalized

spaced but differently phased intervals at the Nyquist rate (i.e., unity sampling interval), as shown in
Fig. 1. The discrete frame observations (regarded as functions that are defined everywhere but are
nonzero only at the sample points) and their Fourier transforms are expressed by

[0 =y®) Y, 8¢ - m), F(Hh=Y Y(f-m,
” i (A1)
£ =yx) Y 8x - m - ), FH =Y Y(f - mer,

where m ranges from —oo t0 oo, and s is the shift. Also, f,(x) and f,(x) describe the shift and no-shift
data of Fig. 1, respectively.

The frames are to be resampled to spatially align the signal prior to differencing. The first step is
linear filtering with a (continuous) interpolation kernel with finite impulse response h(x) (this is the
interpolation function, cf. Fig. 2) and frequency response H(f) (the magnitude of H(f) for LF4 and
DFT-4 is shown in Flg. 6) This pmduce& a pﬂir of continuous functions denoted b}; & and 2

80 =f@«hw), G =HNY Y(-m,
- a2)
8,(x) = f,(x) * h(x), G(f) = H) T Y(f - meo=m,

To obtain a pair of discrete frames that are spatially co-aligned, g,(x) and 8(x) are both resampied
atx = n + 5, where n is an integer (see Fig. 1). This represents a shift for the samnles from which g.(x)

= 1 1 B SVPRROREAAS 8 Ol AV i GQUUIPAINAS 1AV W LLIVIL 51\&}

was derived but not for the samples that generated g,(x). The resampled discrete frames and their Fourier
transforms are given by
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gue(x} = g[(x) E 8x -n - S), GI.R(f) = E H(f— n) E Y(f... m - n)e-ﬁfﬂ,
) " " | (A3)
gm(x) = g,(%) E é6x - n -3, GR{f) = EH(f ) 2 Y(f - m - neReimen

Gz and Gy, are defined over ~o0 < f < cc, but, since they are the Fourier transforms of sampled data,
only their values over —0.5 < f < 0.5 are of interest. Since the signal spectrum ¥{f) is assumed to be
bandlimited to this range, the only nonzero terms in the summations over m are m = —n, when —0.5
< f < 0.5. The resampled frame transforms then simplify to

GR(f) = Y(f) 2,.: H(f - me™, -0.5 < f < 0.5,

{Ad)
G ) =Y() Y H(F - n, ~0.5 < f < 05.
The spectral content of the differencg frame is therefore given by
Dy(f) = Gulf) - Gl = Y() E(£), (AS5)
where
E(fis) =}, H({f - ml - e] (A6)

is a shift-dependent error filter defined for —0.5 < f < 0.5. Thus E(f,s) is a weighted sum of kernel
response samples spaced uniformly at intervals of the sampling frequency, with the response in each
repetition interval phase-shifted by an amount that depends on the frame shift 5. The difference frame is
always zero at integer-valued shifts. Note that, for the ideal sinc function interpolator, H{fj = Rect{f)
(.e., H(f) = 1 for |1 < 172, H{fH = 0 otherwise), so that E{f,s) = § and the difference frame in
Eq. (A5) is identically zero. In general, however, Eqs. (A5) and (A6) show that the difference frame
clutter leakage for a finite interpoiator depends on the out-of-band frequency response, the data spectrum,
and the shift.

The shift-dependent power due to clutter in the difference frame is

PLs) = [T DN dF = [T IXDPIEGSI 41 (A7)

This expression has been derived for an arbitrary deterministic signal with Fourier transform ¥{f). For
a random signal (e.g., clutter or noise), we can use the fact that the expected value of |Y(f)|2 over the
ensemble is the discrete signal power spectrum S(f) to obtain the average error power expression

Po(s) = EPo(s) = [ 2 SUDIEC)1 o 48

To evaluate Eq. (A8), we need a representative background clutter power spectrum to use for S{f).

We have found the following formula, which gives unit integrated power over the range —05 < f <
0.5, to be a useful model for imagery, with n generally in the range of 4 to 6:

S(f) = (= DA - 201, -0.5 < f < 05. (A9)

Taking n = 4 yields the clutter power model used in Eq. (A8) to calculate the resulis given in Section
5.
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The target response attenuation in the no-shift frame caused by the use of a filtering interpolator must
also be calculated to obtain the signal-to-clutter ratio at the frame differencing signal processor’s output.
Given a frequency-domain description 7{f} of the target signal shape, the output target power in the
no-shift frame is found from Eq. (A4), with ¥{f} replaced by I{f), to be

Po= [C AT IX HG - m* & (A10)

The output target power in the shift frame could be similarly calculated; inspection of Eqs. (A4) and
(A10) shows that it is shift-dependent. We now assume that the target moves sufficiently between frames
that there is no significant interference of the target waveforms when the difference is taken. With this
assumption, Egs. (A8) and (A10) can be combined to compute the output signal-to-clutter ratio given in
Fig. 7:

SCR(s) = PP {s). (Al1)
(4

The results, Egs. (A8), (A10), and (A11), along with the model power spectrum Eq. (A9), were used
to calculate the performance figures for standard and filtering interpolators given in Section 5.

We have attempted to improve interpolation performance by adjusting the parameter ‘‘q:’’ this
determines H(f) and the error fitler E(f,5). Another degree of freedom can be developed by dropping the
condition that only the first frame is shifted. For example, we might ““split the difference’’ between the
two frames by moving one to the right by s/2, the other to the left by /2. The latter is the same as a
rightward shift by 1 — s/2. Inspection of Fig. 3 shows that |H{f,s)| is the same function of frequency
for a shift of 1 — 5/2 as it is for 5/2, so a “two-way’” shift produces identical (in amplitude) spectral
filtering of the two data sets. But it does not necessarily give better interpolation results than a one-way
shift. To see why this is so, we first note that if resampling is not to be done on one of the original
sampiing grids, there is no reason why it must be done at §/2; it couid be done anywhere in the [0,s]
interval. Such a two-way shift corresponds to replacing x — n — s as the argument of the § functions on
the left-hand side of Eq. (A3) byx —n — 8s, with0 < 8 < 1,

We now have another parameter to adjust and a more general error filter:

E(fs5) = f: H(f - n)[ePr-6m - giom)

nm-&o

(A12)
=2 ¥ sin(wsn)[H(n - fe” = - H(n + feJw-%m]

n=l

where the fact that H(f) is an even function (it is the Fourier transform of k(x), which is real and even)
has been used. Next, we rewrite Eq. (A6) in the form

o

Y H(f -l - eP™]

Am«o

it

E(f£9)
(A13)

W

2 f: sin(wsm)[H(n - fle7™ - H(n + e ].
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The relation between Eqs. (A12) and (A13) is hard to interpret in general, but the special case § =
172, s = 1/2 is instructive. Equations (A13} and {A12) become, respectively,

E(f,2) = 2[H( - f) + H(L + f)], (Al4)
and
E(fi1/12y = 2IHQ1 - )y - H(1 +f)), (Al5)

where the approximation comes from the fact that the » = 1 term dominates the sum (because oaly odd
terms give nonzero contributions, which decrease rapidly as n increases, as shown in Fig. 6).

Equations (Al14) and (Al5) show that the relative performance of one-way (E,) and two-way (E;)
interpolations depends on the relative signs and magnitudes of H just above and beiow unit frequency.
For example, the relevant sidelobes for DFT-4 (see Fig. 6) have an opposite sign before the absolute
value is taken, hence tend to cancel in Eq. (A14) and reinforce in Eq. (A1S) (i.e., [H(l1 — f) + H(1 +
M < {H(1 — p — H( + p| for 0 < f < 0.25). Recalling that imagery tends to be dominated by low
frequencies, we therefore expect that a one-way shift will give a smalier error than a two-way shift, at
least for 8,5 = 1/2. Trials on our Gaussian point spread functions and simulated imagery and evaluation
of Eq. (A11) bear out this expectation.

In general, 8 could be chosen to minimize Egs. (A7) or (A8) for a particular interpolator, signal
power spectrum, and shift. We have not investigated this point extensively, but have found improvements
in clutter suppression for ‘@’ near zero to be much less than can be obtained by using best-filtering “‘a.”
For best-filtering “‘2,”” improvements in clutter suppression are likely to be significant only for very
low-noise data (otherwise, using the best-filtering value of “‘a’” will, by itself, reduce interpolation error
below the noise level). For DFT-4 with best-filtering ““a,”” we have found 8 = 1 (conventional one-way
interpolation) to give the smallest interpolation errors. For LF-4 with hast-filtering “‘2,”” 2 two-way shift

with 8 = 1/2 tends to give better results than one-way when § < 1/4,
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